Contact Us

Sonomechanics Blog

6 Frequently Used Terms in Ultrasonic Processing of Liquids

[fa icon="calendar'] Dec 1, 2015 4:39:00 PM / by Alexey Peshkovsky, Ph.D. posted in Ultrasonic Processing Systems, Theory of Ultrasonic Processing, Extraction

[fa icon="comment"] 22 Comments

This blog post focuses on six common terms used in conjunction with ultrasonic processing: ultrasonic amplitude, power, frequency, power intensity, power density and processing rate.

Whether you use ultrasonic processing for making nanoemulsions, milling pharmaceutical crystals, degassing, extracting botanical oils, manufacturing bio-fuels, dispersing pigments, disrupting cells or enhancing a chemical process, there are several general terms you need to be familiar with. Knowing these terms and keeping track of the corresponding parameters will insure reproducibility of results and simplify process-related discussions with your peers. 

Read More [fa icon="long-arrow-right"]

4 Main Components of an Ultrasonic Liquid Processor

[fa icon="calendar'] Nov 3, 2015 2:43:00 PM / by Iva Gyurgina posted in Ultrasonic Processing Systems, Ultrasonic Degassing, Food & Beverage, Wet Milling and Dispersing

[fa icon="comment"] 4 Comments

Are you introducing ultrasound as a new technological solution for your liquid processing application? If so, some terms used in the ultrasonic industry may be unfamiliar. With this in mind, we are launching a series of blog posts that will cover the most common ultrasonic equipment and processing-related terminology.

This first post will focus on the terms used to describe the main components of an Industrial Sonomechanics (ISM) ultrasonic liquid processor and show you how these components work together. 

Read More [fa icon="long-arrow-right"]

Methods For Reducing Noise Caused By Ultrasonic Processors

[fa icon="calendar'] Oct 5, 2015 12:36:00 PM / by Iva Gyurgina posted in Ultrasonic Processing Systems

[fa icon="comment"] 0 Comments

Many of us face the challenge of noisy work environment. In our previous blog post we talked about the noise produced by ultrasonic processors, which, if precautions are not taken, can be loud enough (up to 109 dBA) to cause significant discomfort and even lead to hearing loss. The details can be found at: How Loud is Your Ultrasonic Processor?

In most cases, a 20 - 25 dBA reduction in the ultrasonic equipment noise is sufficient for compliance with the U.S. and European occupational noise level regulations for an 8-hour work shift [1].  An additional reduction by approximately 5 - 10 dBA would bring the noise down to a background level for most industrial work environments. An ideal ultrasonic equipment noise reduction method would, therefore, attenuate sound levels by about 30 - 35 dBA across the audible frequency range.

Read More [fa icon="long-arrow-right"]

How Loud is Your Ultrasonic Processor?

[fa icon="calendar'] Sep 22, 2015 12:33:00 PM / by Iva Gyurgina posted in Ultrasonic Processing Systems

[fa icon="comment"] 2 Comments

The effect of operating an ultrasonic liquid processor (sonicator) on hearing is a question that arises often during discussions with our customers. The noise made by sonicators can be described as intense "hissing", which, if precautions are not taken, can be loud enough to cause significant discomfort or even lead to hearing loss. We performed a series of noise level measurements to determine how loud different types of ultrasonic processors really are.

Read More [fa icon="long-arrow-right"]

Ultrasonic Production of Pharmaceutical Emulsions

[fa icon="calendar'] Aug 24, 2015 12:56:00 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products

[fa icon="comment"] 0 Comments

Oil-in-water emulsions with nano-sized droplets (nanoemulsions) are widely used in the pharmaceutical industry, for example, as an intravenous source of fatty acids when oral nutrition is disadvantageous or as bioactive compound carriers (e.g. drugs, vaccines). Pharmaceutical nanoemulsions can be administered by almost all available routes including parenteral, ocular, nasal, oral, topical, and even aerosolization to the lungs. There are currently over a dozen commercially available drugs encapsulated into nanoemulsions. Small oil droplet sizes and the associated stability of these products are critically important. 

Read More [fa icon="long-arrow-right"]

Advantages of Ultrasound for Producing Emulsion Fuels

[fa icon="calendar'] Aug 1, 2015 8:38:00 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products

[fa icon="comment"] 5 Comments

Combustion equipment (e.g., diesel engines, power boilers) emits significant amounts of hazardous gasses, such as Nitrous Oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2) as well as particulate matter (PM) and black smoke. Due to the widespread use of this equipment, the resulting damage to human health and the environment is tremendous. Adding 5 – 25% of water to the base fuel, such as diesel or kerosene, in the form of a very fine emulsion (nanoemulsion) significantly reduces these harmful emissions.

Read More [fa icon="long-arrow-right"]

Scaling Up the Production of Stable Emulsion-Based Products

[fa icon="calendar'] May 28, 2015 2:04:00 PM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products, Process Scale-up

[fa icon="comment"] 0 Comments

Are you able to make stable emulsions in the lab, but have trouble replicating the same result in the production environment? Scaling up an emulsification process is frequently even more challenging than succeeding at its lab optimization. In most cases, the post-scale-up loss of product stability is caused by the inability of industrial liquid processors to provide the same intensity of shear forces as was implemented during the research phase, which is why choosing the right production-scale equipment is fundamental.

Read More [fa icon="long-arrow-right"]

Achieving Stability of Oil-in-Water and Water-in-Oil Emulsion Products

[fa icon="calendar'] May 9, 2015 4:38:00 PM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products

[fa icon="comment"] 15 Comments

Do you need to make a product that comprises a homogeneous mixture of oil and water? Is stability of this product a major concern? If so, you are not alone. One of the biggest challenges faced by product developers and process engineers in a wide variety of industries is achieving long-term  stability of products based on combinations of oil and water.

 

Read More [fa icon="long-arrow-right"]

ISM's Ultrasonic Technology Development Achievements During 2014

[fa icon="calendar'] Feb 26, 2015 12:22:00 AM / by Alexey Peshkovsky, Ph.D. posted in General Announcements

[fa icon="comment"] 0 Comments


The year of 2014 was busy and successful, and we are delighted to let you know of some of our achievements:

Read More [fa icon="long-arrow-right"]