Contact Us

Sonomechanics Blog

All-In-One NanoStabilizer®-LT Simplifies Making Water-Soluble CBD and THC

[fa icon="calendar'] Apr 10, 2018 9:00:00 AM / by Iva Gyurgina posted in Emulsion-based Products, Medical Cannabis

[fa icon="comment"] 54 Comments

You do not have to be a scientist to make high-quality water-soluble CBD and THC! Industrial Sonomechanics' customers no longer need to develop their own formulations and production protocols for cannabis extract nanoemulsions. We are pleased to announce the launch of a new product: All-In-One NanoStabilizer®-LT. This convenient product can tremendously simplify the ultrasonic production of high-quality, translucent nanoemulsions of bio-active ingredients such as cannabis extracts. This product is designed to work in conjunction with our laboratory, bench and industrial ultrasonic processors, and comes with detailed, easy-to-follow instructions.

Read More [fa icon="long-arrow-right"]

Ways to Consume Cannabis: How Water-Compatible Nanoemulsions Can Help

[fa icon="calendar'] Aug 20, 2017 9:00:00 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products, Medical Cannabis

[fa icon="comment"] 11 Comments

There are many ways to administer medical and recreational cannabis, each with its own benefits and drawbacks. One common feature, however, is that only a certain (generally small) percentage of the consumed cannabinoid content, defined as "bioavailability", can be absorbed into the bloodstream with each method. This stems from the fact that cannabinoids are not water-soluble and, therefore, not readily compatible with the predominantly water-based human body. Water-soluble compounds such as ethanol, on the other hand, can be quickly and efficiently delivered to the bloodstream via a variety of alcoholic beverages, eliminating the need for other delivery methods. Wouldn't it be great if the same could be done with cannabis?

Read More [fa icon="long-arrow-right"]

The Role of Carrier Oils in Water-Soluble CBD and THC Formulations

[fa icon="calendar'] Jan 28, 2017 11:37:28 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products, Medical Cannabis

[fa icon="comment"] 51 Comments

This is a second article in the series on the principles of formulating water-compatible cannabis extracts and isolates, also known as water-soluble CBD and THC. The first article showed multiple advantages of nanoemulsions over the other two water-compatible formulation classes: microemulsions and liposomes. Here I will demonstrate the importance of using a carrier oil in your cannabis extract or isolate nanoemulsion. I will also explain how to select the proper carrier oil among the available choices.

Read More [fa icon="long-arrow-right"]

Water-Soluble Cannabis Oils: Microemulsion, Liposomes or Nanoemulsion?

[fa icon="calendar'] Nov 24, 2016 9:00:00 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products, Medical Cannabis

[fa icon="comment"] 94 Comments

Industrial Sonomechanics is launching a series of blog posts dedicated to describing the main principles of developing water-compatible cannabis extract formulations, also known as water-soluble CBD and THC. As explained in our earlier blog post, since medical marijuana extracts are oils and, as such, not soluble in water, they have to be specially formulated in order to become water-compatible and acquire the appearance of being water-soluble. There are three formulation classes that can provide this property: microemulsions, liposomes and nanoemulsions.  

Read More [fa icon="long-arrow-right"]

Improving Candle Production by Nano-Emulsifying Water into Wax

[fa icon="calendar'] Nov 7, 2016 1:12:00 PM / by Taieesa Peshkovsky posted in Emulsion-based Products

[fa icon="comment"] 4 Comments

For centuries, candles have been utilized for light, decoration, religious ceremonies and much more.  The production of modern candles is a complex process, susceptible to several hurdles. Their main constituent, paraffin wax — which is desirable for its relatively low melting point of ~60°C [1] — experiences volatile changes in cost as it is a by-product of crude oil production [2].  Additionally, during cooling, different parts of the jar candle solidify at different rates due to low heat conduction throughout the wax. This leads to uneven settling (referred to as surface undulation), which forms a cavity in the center of the candle and requires a post-process void-filling operation (see Figure 1). 

Read More [fa icon="long-arrow-right"]

Can CBD or THC be Made Water-Soluble?

[fa icon="calendar'] Jul 3, 2016 10:11:12 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products, Medical Cannabis

[fa icon="comment"] 91 Comments

Cannabinoids (CBD, THC, etc.) are hydrophobic (water-hating) oily substances and, as such, not water-soluble. They can, however, be formulated to be water-compatible and appear water-soluble.

The term "water-soluble CBD" has lately been extensively used throughout the medical cannabis industry. "Water-soluble" means able to homogeneously incorporate into water by separating into molecules or ions (dissolve like sugar, alcohol or salt). Oily substances, however, are repelled by water, which forces them to stay separate from it.

Read More [fa icon="long-arrow-right"]

Are Cannabinoids More Effective in Nano Form?

[fa icon="calendar'] May 28, 2016 5:27:08 PM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products, Medical Cannabis

[fa icon="comment"] 49 Comments

Medicinal uses of the cannabis plant (e.g., medical marijuana, hemp) have now been legalized in most US states. In addition to terpenoids and flavonoids, the plant may contain over 85 different types of therapeutically active compounds known as cannabinoids, the main two of which are tetrahydrocannabinol (THC) and cannabidiol (CBD). In recent years, medications based on concentrated cannabis extracts have become popular because they allow many routes of administration that are preferable to smoking the plant itself.

Read More [fa icon="long-arrow-right"]

Ultrasonic Production of Pharmaceutical Emulsions

[fa icon="calendar'] Aug 24, 2015 12:56:00 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products

[fa icon="comment"] 0 Comments

Oil-in-water emulsions with nano-sized droplets (nanoemulsions) are widely used in the pharmaceutical industry, for example, as an intravenous source of fatty acids when oral nutrition is disadvantageous or as bioactive compound carriers (e.g. drugs, vaccines). Pharmaceutical nanoemulsions can be administered by almost all available routes including parenteral, ocular, nasal, oral, topical, and even aerosolization to the lungs. There are currently over a dozen commercially available drugs encapsulated into nanoemulsions. Small oil droplet sizes and the associated stability of these products are critically important. 

Read More [fa icon="long-arrow-right"]

Advantages of Ultrasound for Producing Emulsion Fuels

[fa icon="calendar'] Aug 1, 2015 8:38:00 AM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products

[fa icon="comment"] 5 Comments

Combustion equipment (e.g., diesel engines, power boilers) emits significant amounts of hazardous gasses, such as Nitrous Oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2) as well as particulate matter (PM) and black smoke. Due to the widespread use of this equipment, the resulting damage to human health and the environment is tremendous. Adding 5 – 25% of water to the base fuel, such as diesel or kerosene, in the form of a very fine emulsion (nanoemulsion) significantly reduces these harmful emissions.

Read More [fa icon="long-arrow-right"]

Scaling Up the Production of Stable Emulsion-Based Products

[fa icon="calendar'] May 28, 2015 2:04:00 PM / by Alexey Peshkovsky, Ph.D. posted in Emulsion-based Products, Process Scale-up

[fa icon="comment"] 0 Comments

Are you able to make stable emulsions in the lab, but have trouble replicating the same result in the production environment? Scaling up an emulsification process is frequently even more challenging than succeeding at its lab optimization. In most cases, the post-scale-up loss of product stability is caused by the inability of industrial liquid processors to provide the same intensity of shear forces as was implemented during the research phase, which is why choosing the right production-scale equipment is fundamental.

Read More [fa icon="long-arrow-right"]